Tag: electric vehicles

Asia’s Untold Renewable Energy Success Story: A Candid Conversation

Asia’s energy transition is a significant and often overlooked aspect of the global fight against climate change. In the latest episode of the Climate Confident podcast, I had the pleasure of speaking with Assaad Razzouk, CEO of renewable energy company Gurin Energy, host of The Angry Clean Energy Guy podcast, and author of the book Saving the Planet Without the Bullshit. Our conversation explored the ongoing transformation of the energy landscape in Asia and the positive impact it’s having on the environment.

Asia has long been seen as a major contributor to greenhouse gas emissions, with much of its power coming from coal-fired power plants. However, the tide is turning, and the region is witnessing a massive shift towards clean, renewable energy. Assaad Razzouk shared his extensive knowledge on this topic and provided valuable insights on Asia’s commitment to building a more sustainable future.

One of the episode’s highlights was our discussion about China’s impressive progress in the renewable energy sector. The country has become a global leader in solar power, with over 250 gigawatts of installed solar capacity. This is particularly evident in the rapid expansion of rooftop solar across China, which has benefited from strong government support and policies. China’s solar revolution is not only reducing its reliance on fossil fuels but also paving the way for other countries in the region to follow suit.

Another key takeaway from the episode was the importance of energy access in Asia’s developing countries. Assaad explained that access to electricity is crucial for lifting people out of poverty and improving their quality of life. Decentralized renewable energy solutions, such as rooftop solar and microgrids, are making it possible for remote communities to access clean, reliable power. This not only benefits the environment but also helps to address social and economic inequalities.

We also touched on the issue of plastics in Asia, a complex and multifaceted problem. Thankfully, many Asian countries have taken strong measures to address this issue, banning or significantly reducing the use of single-use plastics. Assaad pointed out that countries like Indonesia have started implementing legislation to hold manufacturers accountable for their plastic waste, a step that is yet to be taken in other parts of the world, including the United States.

The conversation with Assaad Razzouk was both enlightening and inspiring, revealing the incredible progress Asia has made in its energy transition. This transformation is not only helping to combat climate change but also creating opportunities for economic growth, social development, and a brighter future for millions of people.

I encourage you to listen to the full episode of the Climate Confident podcast to hear our in-depth discussion with Assaad Razzouk and learn more about Asia’s inspiring energy transition. You can find the episode on your favorite podcast platform or visit the Climate Confident podcast website. Don’t forget to subscribe and share the episode with your friends and colleagues to spread the word about the positive impact of renewable energy in Asia.

Finally, if you value receiving weekly actionable insights on sustainability and climate, you can always sign up to be a Supporter of the podcast for less than the cost of a cup of coffee.

Stay climate confident, and let’s make a change together!

Photo credit UNDP Climate on Flickr

Revolutionizing the Supply Chain with Electric Vehicles

As the host of the Digital Supply Chain podcast, I’m always on the lookout for the latest and greatest in the world of supply chain and logistics. And today, I had the absolute pleasure of speaking with Mark Ang, CEO of GoBolt, a cutting-edge delivery company that’s changing the game when it comes to sustainability in the supply chain.

Mark is a seasoned veteran of the delivery industry and he’s got a wealth of knowledge and experience when it comes to incorporating EVs into a company’s logistics infrastructure. During our conversation, we explored the many challenges that companies face when trying to make the transition to EVs, and Mark shared some of the key insights that he looks for when monitoring the performance of GoBolt’s system.

One of the biggest takeaways from our chat was that involving EVs in a company’s logistics infrastructure is not as simple as just cutting a check and getting a truck off a lot. It’s a complex process that requires a lot of planning, preparation, and investment in both people and technology. Businesses that want to have EVs as part of their transition strategy need to be thinking about these things if they want to successfully manage their Scope three emissions.

We also talked about sustainability reporting, and Mark shared some of the steps that GoBolt has taken to accurately attribute emissions to an order level. He emphasized the importance of having a robust model that takes into account distance traveled, payload traveled, and other key data points. GoBolt has worked with external consultants to build a model that they feel comfortable publishing externally, and they hope to continue to lead the way when it comes to sustainability reporting in the delivery industry.

Mark shared his vision for the future of GoBolt, and it’s an exciting one. Within the next five to ten years, he sees the company expanding its operations to Western Europe and other commonwealth countries, and continuing to support Fortune 100 and 500 companies as they transition to a more sustainable supply chain.

So, if you’re interested in learning more about EVs, sustainability reporting, and the future of the delivery industry, be sure to listen to this episode of the Digital Supply Chain podcast. I’m confident that you’ll come away with a wealth of knowledge and insights that you can apply to your own supply chain and logistics operations.

And don’t forget to follow and support the Digital Supply Chain podcast! With more exciting episodes like this one in the works, you won’t want to miss a single one.

If you enjoy this episode, please consider following the podcast and sharing it with others who may be interested. And as always, if you find the podcast of value, and you’d like to help me continue to make episodes like this one, you can go to the podcast’s Support page and become a Digital Supply Chain podcast Supporter for less than the cost of a cup of coffee!

And if you’re interested in having your brand associated with this, the leading Supply Chain podcast, don’t hesitate to check out these sponsorship packages and how I can help your company gain exposure and establish yourself as a thought leader in the supply chain industry, please don’t hesitate to get in touch.

Thank you!

Photo credit – Ivan Radic on Flickr

How IoT Helps Fight Climate Change


The internet of things, or “IoT,” is a system of connected devices that share data and work together to achieve a common goal. By 2025, it’s estimated that there will be 75 billion IoT devices in use worldwide. That represents a major opportunity to reduce carbon emissions and make our economy more sustainable. Here’s how IoT is already reducing carbon emissions, and how it can do even more in the future.

Monitoring and reducing energy usage: One of the most direct ways IoT is reducing carbon emissions is by monitoring and reducing energy usage. Connected devices can track everything from how much electricity a building is using to how much water a factory is consuming. This data can be used to make real-time adjustments that result in significant reductions in energy usage. In some cases, these reductions can be as much as 30%.

Improving transportation: Another way IoT is reducing carbon emissions is by improving transportation. Connected devices can be used to optimize shipping routes and traffic patterns. This results in fewer vehicles on the road and less congestion. Additionally, IoT can be used to develop new alternative fuel sources like electric vehicles.

Increasing green energy use: In addition to reducing energy consumption, IoT can also be used to increase the use of renewable energy sources. For example, wind turbines and solar panels can be outfitted with sensors that allow them to adjust their output based on real-time conditions. This ensures that they’re always operating at maximum efficiency, which reduces the need for traditional (and emitting) forms of energy generation.

IoT presents a major opportunity to reduce carbon emissions and make our economy more sustainable. By monitoring energy usage, improving transportation, and increasing green energy use, IoT is already having a positive impact on the environment. As the number of connected devices continues to grow, so too will the potential for even greater reductions in carbon emissions.

If you’d like to know more about successful climate emissions reduction strategies, don’t forget to check out my weekly Climate 21 podcast. With roughly 100 episodes published, you’ll be sure to find lots of learnings there.

How much cheaper is it to drive an electric vehicle than an internal combustion engine one?

“How much does it cost to drive an Electric Vehicle?” and “How much cheaper is it to drive an Electric Vehicle than a petrol/diesel car?”

Those are two questions I get asked a lot and it’s not as easy to answer as you might think. Why? Well, it depends on two main factors

  1. the price of the fuel (electricity/petrol/diesel) in your area and
  2. the fuel efficiency of the vehicle we’re talking about

2008 Toyota Prius2018 Nissan Leaf 40kWh
Price of Fuel (per kWh or litre)€1.30€0.09
Fuel efficiency5.5l/100km6km/kWh
Cost per km€0.0715€0.015
Cost for 10,000km a year€715€150

From 2008 to 2018 I drove a Toyota Prius and it used to get around 5.5l/100km (42.8mpg), and petrol here in Spain costs around €1.30 per litre (roughly $5.93 per gallon). I drove an average 10,000km (6,000 miles) a year so that cost me about €715 in petrol expenses alone (ignoring oil changes, maintenance, etc.).

In 2018 I traded in the Prius for a Nissan Leaf 40kWh. The Leaf can drive 6.25km per kWh of energy in the battery. If we round that down to 6km to make the calculations easier (and to be a little conservative), then because our night rate electricity costs €0.09/kWh, that gives us a cost per km of €0.015 and a total of €150 for the full year’s 10,000km.

Of course, I plug the Leaf in to charge often during the day when the sun is shining so as to take advantage of the “free” electricity being generated by our solar panels, so the figure of €150 is much higher than I pay in reality.

And then there is the issue of maintenance. I didn’t keep a record of how much maintenance I paid for the annual maintenance for the Prius, but when I took delivery of the Leaf the first maintenance scheduled in the Maintenance Manual was at 30,000km. Electric vehicles require far less maintenance than internal combustion engines.

These were my costs. Substitute in your own local costs to see how much you would save by switching your car to an electric one (if you haven’t already!).

Three Industries Where Technology Is Reducing Our Carbon Footprint

 

The science is in. We need to significantly reduce our carbon emissions to limit the amount of warming our planet undergoes as a consequence of climate change.

The good news is, technology is rising up to meet this challenge. The bad news is it needs to do far more, and do it faster. How is technology helping? Well, if we check out some of the industries with the highest carbon footprint (energy, transportation, and agriculture), we can see some of the massive disruptions that are happening there, and how they are impacting emissions.

1 Energy

The energy sector is undergoing a massive transition globally from a system powered by centralised, thermal generation based often on fossil fuel combustion, to one increasingly powered by decentralised renewable sources. And while it would be great if this was happening for reasons of climate concern, it is, in fact, happening for reasons of economics, which is better because it means it is sustainable in the long term.

Why do I say it is because of economics? Because the cost of wind, solar, and lithium-ion battery storage are falling. Falling fast (due primarily to the experience curve). Since 2012 the cost of wind power has fallen 50%, solar power has fallen 80%, and battery storage has fallen 87%. It is now at the point where unsubsidised, combinations of wind and battery storage, or solar and battery storage are able to beat natural gas on price.

Don’t take my word for it. At the Wolfe Research 2019 Power & Gas Leader’s conference last month (October 2nd, 2019) Jim Robo, Chairman, and CEO of NextEra Energy the biggest and most successful utility in the US said

“We see renewables plus battery storage without incentives being cheaper than natural gas, and cheaper than existing coal and existing nuclear… And that is game-changing”

Then, when you consider the amount of time it takes to deploy a power plant, renewables win again.

IMG_0029

And consequently, the share of new power generation being deployed globally that is renewable is rising rapidly, while the share of new fossil fuel generation is falling fast.

IMG_0030

And it is not just the supply side of the equation that is changing. The demand side is changing rapidly as well.

More and more organisations are demanding that their energy provider only supply clean, renewably sourced electricity. In fact, RE100, “a global corporate leadership initiative bringing together influential businesses committed to 100% renewable electricity” counts at time of writing (November 2019) 212 of the world’s largest companies (including my own employer SAP) as members. All 212 companies are either sourcing all their electricity from renewable sources or have committed to doing so in the near future. Companies do this because it is good for business. Consumers feel better about purchasing goods if they know they were produced using renewable energy, and employees feel better about working for organisations committed to renewable energy.

 

2 Transportation

So the carbon intensity of electricity, one of the main carbon polluters is falling worldwide on a gCO2/kWh basis. What about one of the other big polluters I mentioned at the start, Transportation. Well, fortunately, electric grids the world over are embracing renewable energy, because transportation is now starting to use electricity as a fuel, instead of dino-juice!

Why is transportation going electric? Three main reasons:

  1. Increasing environmental awareness among consumers
  2. Regulations from regions, countries and local governments and
  3. Economics – the costs to operate an electric vehicle (EV) are significantly less than a fossil fuel one

Nissan Leaf charging
Photo credit Tom Raftery

Greta Thunberg has done an amazing job of raising awareness in younger generations particularly about the dangers of climate change, but even before she burst on the scene, the 2019 regulations governing NEVs (New Energy Vehicles) in China and the 2020 emissions regulations for vehicle manufacturers in the EU (as well as local ordinances by cities restricting access to older, more polluting vehicles and countries on the phase-out date for the sale of Internal Combustion Engined vehicles) meant that vehicle manufacturers have had no option but to get on board with the electrification of cars and increasingly other modes of transport as well.

At a time when global vehicle sales are falling, sales of EVs are taking off.

statistic_id270603_battery-electric-vehicles-in-use---worldwide-2012-2018

Volkswagen, who have had some *ahem* reputational issues recently, have decided to embrace the Winston Churchill mantra of never letting a crisis go to waste, and are going all-in on EVs. They plan to spend €60bn (yes billion with a “b”) by 2024 to switch to electric, hybrid and connected vehicles. They will introduce up to 75 all-electric models, around 60 hybrid vehicles and plan to sell 26 million all-electric vehicles as well as around 6 million hybrid vehicles by 2029.

Perhaps even more tellingly, Daimler recently announced that they are stopping their internal combustion engine development initiatives and focussing instead on electric vehicles. The reason this announcement is so game-changing is that Daimler owns Mercedes Benz and Karl Benz, the founder of Mercedes Benz received the patent for the world’s first production internal combustion engine vehicle in 1886. Now 133 years later Daimler has decided that the era of the internal combustion engine is over, and EVs are the future.

And it is not just cars, motorbikes are also going electric with announcements of electric bikes from all the major manufacturers including Vespa, Yamaha, Honda, all the way up to Harley Davidson.

Buses, trucks (from the large class 8 all the way down to delivery trucks), and refuse collection vehicles are also going electric. This is important not just for reducing their carbon emissions, but also because these vehicles often work primarily in urban centres so converting them from diesel to electric will improve air quality, reduce noise pollution, and significantly reduce the cost of operation for these machines.

FuelUseVehicleCategory

Also, when you take into account the fuel use by categories of vehicle, you can see from the chart above that class 8 trucks, buses, and refuse collection vehicles consume far more fuel than other vehicle categories. Fuel use is of course, not just a good proxy for their potential to pollute, but also for their running costs so the economic case to shift these to electric is very strong. In the case of buses, battery-electric buses cost 20c per mile to operate over their lifetime, whereas diesel buses cost 75c and so, battery-electric buses will dominate the market by the late 2020s.

And it doesn’t stop there. Construction equipment is going electric. Ships are going electric. Even planes are going electric. Global consultancy firm Roland Berger is currently tracking 170 different electric plane initiatives (about 50% are in the urban air taxi space). While the Johan Lundgren, CEO of easyJet has said that:

easyJet is collaborating with US company Wright Electric to support their goal for short-haul flights to be operated by all-electric planes within 10 years

It is hard to think of a mode of transportation that is not moving towards electric drivetrains. And as we saw above in the section on energy, as our grids are getting cleaner daily, shifting transportation to electricity quickly drops transportation’s carbon footprint too (as well as reducing noise pollution, and cleaning up our air quality).

3 Food Production

Food production is the third industry where technology is about to play a huge part in reducing our carbon footprint. Agriculture globally accounts for about 13 percent of total global emissions. That makes the agricultural sector the world’s second-largest emitter, after the energy sector. And this doesn’t include emissions associated with deforestation to clear land for more agriculture.

However, shifting away from our current practices of food production to one where our plant food is grown in massive indoor vertical farms has the potential to significantly clean up agriculture’s environmental toll.

Indoor vertical farms use 95% less water and 99% less land than conventional farming practices. They use no soil, require no herbicides or pesticides and they can produce food in the middle of cities, thereby reducing drastically the crop’s food miles. When you are producing food so close to the point of consumption, you no longer need to optimise your produce for shelf-life, and you can instead choose to optimise for taste, and/or nutrition.

Then there is the clean meat movement. Clean meat is meat that is produced from either cultivating animal cells (without having to slaughter the animal), or by converting plant protein to take on the taste and consistency of animal protein as companies such as Beyond Meat and Impossible Foods are doing so successfully.

Our current means of producing plant food and meats are vastly inefficient and have a huge carbon footprint. This won’t scale to feed the population of 9-10 billion inhabitants that we are projected to reach in the coming decades, especially as the middle classes grow in the developing world and their meat consumption expectations grow too.

Converting to a system where we produce plants in massive vertical farms, and then using that plant food to create clean meat solves a lot of the problems associated with agriculture today such as the unconscionable cruelty we visit on the animals we breed for slaughter, the vast amounts of antibiotics that are used in agriculture leading to the development of multi-drug resistant superbugs, and agriculture’s massive carbon footprint.

Zebra
Zebra in Pilansberg reserve – photo credit Tom Raftery

If we return the land we have stolen from nature for agriculture back to the wild we can restore the enormous losses we have seen in recent decades in biodiversity, create a huge new ecotourism industry, and through reforestation sequester from the atmosphere much of the carbon we have emitted in the last century, mitigating the or possibly turning back the worst effects of climate change.

As the United Nations COP25 Climate Change Conference kicks off in Madrid, it is important to remember that although the situation with the climate is indeed dire, there are solutions. We just need to embrace them. Quickly.

This piece was originally posted on my Forbes blog

IBM and ESB develop IT system for smart electric vehicle charging in Ireland

Electric vehicle charging
In August 2010 I was given the chance to test drive a pre-production model Nissan Leaf in Ireland. I was totally taken with the experience, so it was with a certain amount of delight I read last week that IBM and ESB eCars were collaborating to implement a country-wide smart charging IT system for electric vehicles in Ireland.

ESB Networks has so-far approximately 1,000 electric vehicle public charging points currently available, with a target of installing 1,500 on-street charge points and 30 fast charge points. ESB also have Android and iPhone mobile phone apps to help drivers locate charge points throughout the country.

The IT system being created by IBM and ESB will allow drivers to access, charge and pay for a car charge using an identification card. According to the release:

Electric vehicle parking place

The IBM EV platform will enable EV drivers to select convenient payment options and access all charge-points using one ID card – a process that will aggregate usage costs and simplify billing. This smart charging capability allows consumers to charge anywhere at anytime, regardless of their electricity provider and without the need to carry multiple access cards. Additionally, drivers will also have the option to use a mobile device or browser to locate the nearest charge post, check its availability, and make a reservation if the post is available.

This gives tremendous flexibility and ease of use to drivers of electric vehicles, while also providing valuable data to utilities on energy usage. This usage data will allow better forecasting of demand and help balance the load on the power grid as well as help ESB Networks to monitor the health and status of the charge-points to ensure service reliability.

The changeover to a national fleet of electric vehicles is always going to be a difficult proposition which will take considerable time and faces the familiar chicken and egg issue. However a move like this from ESB and IBM will certainly help reduce the chicken and egg issue somewhat and should contribute to a faster adoption of electric vehicles in Ireland.

Full disclosure – IBM and ESB Ireland are not GreenMonk clients (though in the past IBM has commissioned work from GreenMonk).

Image credits Tom Raftery

(Cross-posted @ GreenMonk: the blog)

(Cross-posted @ GreenMonk: the blog)

Unfortunate EV choice won’t help SAP’s Greenhouse Gas reduction commitments

SAP's 2010 Global Greenhouse Gas Footprint

The graph above is taken from the Greenhouse Gas Footprint page of SAP’s Sustainability Report and it shows SAP’s global GHG footprint for 2010. Of particular note in this graph is that globally SAP’s 2010 carbon footprint for corporate cars is 24%. This is up from 23% in 2009 and 18% in 2008. This is obviously a problem for SAP who have publicly committed to reducing their Greenhouse Gas Emissions 51% (from their 2007 baseline) by 2020.

In an effort to help address this SAP decided to embark on a small scale Electric Vehicle (EV) project called Future Fleet. Future Fleet uses a fleet of 30 EV’s charged solely from renewable sources supplied (along with the charging infrastructure) by project partner MVV Energie.

SAP Future Fleet electric vehicle

SAP Future Fleet electric vehicle

SAP are using this project to test employee attitudes to EV’s but also to test their own EV eMobility charging and fleet management software which is being developed, and tested in tandem with the project. The software allows employees to log in and book cars for specific journeys between SAP sites in Germany, or for a day or a week at a time. The software also intelligently prioritises charging of cars based on expected upcoming journey duration, current battery state and other factors.

All good and laudable stuff. However, one major issue I have with the project is that for purely political reasons SAP chose an electric car for the project which seemed to be designed with the distinct purpose of turning drivers off EV’s…

The zero-emissions Nissan Leaf test drive

The Nissan Leaf

I love the idea of electric cars and have done for a long time.

Recently, one of my best friends Ray Flynn, proprietor of Flynns Garage (a Nissan Dealership in Carlow, Ireland), contacted me to let me know he is one of only 15 Nissan dealerships in Ireland who have been approved to sell the new all-electric Nissan Leaf. As such he had a limited number of slots available for a test drive and he wanted to know if I’d like one of them. I jumped at the chance!

The Leaf is a totally electric car relying completely on its 24 kW·h/90 kW lithium ion battery pack for power. The battery pack is rated to deliver 100 miles on a full charge but this can vary from about 62 miles (100 km) to almost 138 miles (222 km) depending on driving style, load, traffic conditions, weather (i.e. wind, atmospheric density) and accessory use.

Nissan Leaf under the hood

Nissan Leaf under the hood

The car is a five seater with a spacious interior. It is very responsive to drive. My own car is a 2008 Toyota Prius and this is a much nippier car than the Prius. It handles well on the road and because there are 300kg of batteries under the floor, the car sticks to the road on corners!

Charge time varies on the type of charging (normal or fast) and whether the battery is fully depleted or only partially. Using a standard 220/240 volt 30 amp supply the battery can be fully charged in 8 hours. Fast charging using a 440V level 3 charger charges to 80% in around 20 minutes – these are typically the kinds of chargers you will see deployed in places like McDonalds, Tesco’s and motorway café’s I assume.

Nissan Leaf interior

Nissan Leaf interior

There is a lot of technology built in to the car. It is connected to a global data center which provides support, information and entertainment at all times. The GPS navigation system delivers a constantly updating display of your range as well as showing all the charging stations on your route and it allows you to book a charging station to ensure that it is available when you arrive.

Mobile phone apps will allow remote turning on of aircon and heating as well as setting charging times to coincide with time of use rates from utilities…

Friday Morning Green Numbers round-up 03/19/2010

Green numbers
Photo credit: Unhindered by Talent

Here is this Friday’s Green Numbers round-up:

Posted from Diigo. The rest of my favorite links are here.

by-sa