Tag: Featured

Predictive Maintenance for People – the endgame for the Internet of Things (#IoT) and healthcare

Predictive maintenance is one of the oldest and most tested uses cases for the Internet of Things (IoT).  For years now, we’ve been able to analyze incoming data from sensors embedded in machines and make decisions about whether or not maintenance activities should be executed.

Typical scenarios have historically focused on things like wind farms, oil rigs, and fleets of trains. And while there’s plenty of excitement and new developments in these areas, what’s grabbing a lot of attention today is how predictive maintenance can be applied to new scenarios.

For example, in an earlier blog, I talked about predictive maintenance for autonomous vehicles – how sensors can send out data on the status of parts and components, allowing manufacturers to analyse this data to predict part failure and, thus, avoid breakdowns.

Yet, even this scenario keeps us in the realm of machines – because, sophisticated as it may be, an autonomous vehicle is still a machine. But what if we could now take the same general idea of predictive maintenance for machines and apply it to our bodies? Call it preventative maintenance for people – or just predictive healthcare. The reality is that in many ways, we’re already there.

Understanding in context

One of the advantages to predictive maintenance for machines is that incoming data about what’s going on in the moment can be analyzed in the context of historical data about the same machine. Let’s say an HVAC machine on the top of a hotel in Seville – where I live – sends out a high-temperature alert.

In and of itself, yes, this may be cause for concern. But when you realize that the machine sends out the same alert every month at the same time – well, maybe it’s not so concerning. Maybe the HVAC unit runs continuously for 8 hours on the first Monday of every month to help cool a large conference room on the used for the packed monthly meeting of the Seville Dog Walker’s Association.

Or maybe there’s another reason. The point is that in such a scenario, the high temperature alert is understandable and predictable in context – and thus of little concern. It would be nice if we had something similar for healthcare.

More than a snapshot

Here’s the problem: On a typical trip to the doctor you wait in the waiting room for 10-15 minutes, with other people, some of whom are likely sick. When you finally see the doctor, you’re thinking of the next appointment you have across town in 30 minutes so your anxiety levels go up.

My sister Mary was recently diagnosed with high blood pressure because when she was in the doctor’s clinic her blood pressure measured 150/89. The doctor advised her to get a connected blood pressure cuff, and to take regular measurements. When she did, it turned out her blood pressure was 108/75 – completely normal. She was suffering from what doctors call White Coat Syndrome.

IMG_4359

But as with the HVAC machine, the high blood pressure reading was understandable in the context of her being in a doctor’s office. Wouldn’t it be great if the doctor evaluating your blood pressure had more than a snapshot of (often misleading) data to work from? Wouldn’t a whole bunch of relevant historical data be better?

With the smartwatch on my wrist, I can now share 3 years of data with my doctor. Now s/he can see things in context and treat me more effectively. I think it’s only a matter time before their office can take my sensor data in automatically – over the cloud. This will make my yearly check-up more productive. Instead of figuring out what the problem is (if there is one, hopefully not) we’ll be able to focus on what to do about it.

A business network for health  

As with so many things IoT, this is only the beginning. But let’s step back for a moment.

One of our offerings here at SAP is the SAP Asset Intelligence Network (SAP AIN). Think of it as a business network application. With SAP AIN, all of the data (metadata, specifications, bills of materials, whatever) that goes into the creation of a device (a compressor, coffee machine, car, whatever) can be stored in a central location.

When connected to the asset intelligence network, the device can push out real-time data that describes its state at any given moment. When the device owner allows access to this data, the manufacturer can then analyse it in conjunction with other data from other devices – making product improvements that can then be pushed out by way of the same asset intelligence network.

In fact, nothing is stopping device owners from sharing their data with whoever they wish – like maybe a service vendor, or insurance company. If a device goes out of tolerance for some reason, the service vendor could receive a notification and schedule an appointment to service the device automatically. Or in the case of an insurance company – they could then set rates according to actual device usage data.

Returning to the theme of health – what if we took this idea of an asset intelligence network and applied it to our own bodies? What if we had a “people’s intelligence network” – where a device like my smartwatch publishes my health data into a trusted cloud application?  When my device senses high blood sugar, for example, this data gets analyzed not only in the context of the unique moment mixed with my own personal health history – but also in the context of similar data from potentially millions of people.

Based on this much larger dataset, the network could then contact my service vendor – in this case, my doctor – and make an appointment if necessary. Yes, this would be convenient. But more importantly, it would move us away from making medical decisions based on poor data and the intuition of physicians, toward something often heralded but seldom achieved – real evidence based medicine.

Photo credit Chelsea Stirlen

Artificial Intelligence and the Future of Jobs

My role here at SAP is IoT Evangelist. It’s my job to go around and speak about how the Internet of Things is changing the way we live, work, and run our businesses. IoT Evangelist is a job title that didn’t exist 5 or 10 years ago – mainly because the Internet of Things wasn’t a “thing” 5 or 10 years ago. Today it is, so here I am.

The fact is, technological change has a tremendous impact on the way we spend our working lives. Many of today’s jobs didn’t exist in the past. Of course, the reverse is true as well: a lot of jobs – mostly tedious/manual labor of some variety, think miners, lift operators, or similar – have gone away.

Robots and much more

Much of the discussion today about the relationship between technology and jobs is a discussion about the impact of artificial intelligence (AI). Robots in manufacturing is the most obvious example. A lot of AI has to do with big data analysis and identifying patterns. Thus, AI is used in data security, financial trading, fraud detection, and those recommendations you get from Google, Netflix and Amazon.

Screen Shot 2017-11-28 at 14.01.55

But it’s also used in healthcare for everything from identifying better subjects for clinical trials to speeding drug discovery to creating personalized treatment plans. It’s used in autonomous vehicles as well – to adjust, say, to new local conditions on the road. Some say it’s also coming for professional jobs. Think about successfully appealing parking fines (currently home turf for lawyers), automated contract creation, or automated natural language processing (which someday could be used to write this blog itself – gulp!).

The spinning jenny

Will AI continue to take jobs away? Probably. But how many new jobs will it create? Think back to the spinning jenny – the multi-spindle spinning frame that, back in the mid-18th century, started to reduce the amount of work required to make cloth.

By the early 19th century, a movement known as the Luddites emerged where groups of weavers would go around smashing these machines as a form of protest against what we’d now call job displacement. But these machines helped launch the industrial revolution.

As a result of the spinning jenny’s increased efficiency, more people could buy more cloth – of higher quality, at a fraction of the cost. This led to a massive uptick in demand for yarn – which required the creation of distribution networks, and ultimately the need for shipping, an industry that took off in the industrial revolution.

As the spinning jenny came into use, it was continuously improved – eventually enabling a single operator to manage up to 50 spindles of yarn at a time. Other machines appeared on the scene as well. This greater productivity, and the evolution of distribution networks also meant there was a need for increasingly comprehensive supply chains to feed this productivity boom.

Muscle vs caring

Economists at Deloitte looked at this issue of technological job displacement – diving into UK census data for a 140-year period stretching from 1871 to 2011. What they found, not surprisingly perhaps, is that over the years technology has steadily taken over many of the jobs that require human muscle power.

Agriculture has felt the impact most acutely. With the introduction of seed drills, reapers, harvesters and tractors, the number of people employed as agricultural laborers has declined by 95% since 1871.

But agriculture is not alone. The jobs of washer women and laundry workers, for example, have gone away as well. Since 1901, the number of people in England and Wales employed for washing clothes has decreased 83% even though the population has increased by 73%.

Many of today’s jobs, on the other hand, have moved to what are known as the caring professions, as the chart below shows. The light blue bars represent muscle-powered jobs such as cleaners, domestics, miners, and laborers of all sorts; the dark blue, caring professions such as nurses, teachers, and social workers. As you can see, these have flipped.

Screen Shot 2017-11-28 at 13.53.19

The Deloitte study also points out that as wealth has increased over the years, so have jobs in the professional services sector. According to the census records analyzed, in England and Wales accountants have increased from 9,832 in 1871 to 215,678 in 2015. That’s a 2,094% increase.

And because people have more money in general, they eat out more often – leading to a fourfold increase in pub staff. They can also afford to care more about how they look. This has led to an increase in the ratio of hairdressers/barbers to citizens of 1:1,793 in 1871 to 1:287 today. Similar trends can be seen in other industries such as leisure, entertainment, and sports.

Where are we headed now?

Will broader application of AI and other technologies continue the trend of generating new jobs in unexpected ways? Most assuredly. Already we’re seeing an increased need for jobs such as AI ethicists – another role that didn’t exist 5-10 years ago.

The fact of the matter is that technology in general, and AI in particular will contribute enormously to a hugely changing labour landscape. I mentioned at the start of this post that my role in SAP is IoT Evangelist – this is a role I fully expect to no longer exist in 5 years time, because by then everything will be connected, and so the term Internet of Things will be redundant, in the same way terms like “Internet connected phone”, or “interactive website” are redundant today.

The rise of new technologies will create new jobs, not just for people working directly with the new technologies, but also there will be an increasing requirement for training, re-training, and educational content development to bring people up-to-speed.

Will there be enough of those jobs to go around – and will they pay enough to support a middle-class existence for those who hold them? That’s another question – but it’s one that’s stimulating a lot of creative, innovative ideas of its own as people think seriously about where technology is taking us.

 

Photo credit Jessie Hodge

Here come the Jetsons: Flying cars and the Internet of Things (IoT)

Part 3 of 3 on the Future of Transportation and the Internet of Things

If you ever watched the cartoon series The Jetsons – or almost any other show set in the space age – you’ll notice that people often get around in personal spacecraft that they themselves drive. Well, the space age is almost here – at least in the form of flying cars. But we won’t be driving them. Instead, like cars they will be controlled autonomously.

In my last blog, I talked about autonomous vehicles and how much safer they are than self-driven vehicles. To ensure safety in the air, flying cars depend on the same network-connected IoT technology pioneered first in autonomous vehicles on the road.

Is the space age really here?  

Let’s first take a quick look at some of the leading organisations out there doing serious work with flying cars.

  • Lilium: A German start-up, Lilium tested a full-sized prototype of its flying car in April 2017. The Lilium prototype is entirely electric. It can also take off and land vertically like a helicopter – but then change to forward flight for speeds of up to 300km/h, which is much faster than a helicopter. And it’s quieter than a motorcycle. Lilium has raised $100m in two rounds of funding from Tencent, Ev William’s Obvious Ventures, Niklas Zennstrom’s Atomico amongst others.
  • EHang: A Chinese company with deep experience building drones, EHang is perhaps the furthest along. The company produces the EHang 184 – a one-passenger flying car that has already undergone 100 successful manned test flights. Reportedly, the city of Dubai is this year launching a pilot program for an autonomous aerial taxi (AAT) service using the EHang 184.
  • Airbus: The aircraft giant, Airbus, has developed CityAirbus, an electric vehicle capable of vertical take-off and landing for up to four passengers. Airbus Vahana aims in the same direction but for is for individual travelers. And let’s not forget the hybrid Airbus Pop.Up concept, this modular air and ground system involves a passenger capsule that can be connected to a propeller system on top for flying or to a wheeled conveyance system for driving on the roads.
  • And Uber – who recently signed an agreement teaming up with NASA around NASA’s Uncrewed Traffic Management (UTM) project developing air traffic control systems for uncrewed aerial systems (flying cars/drones).
  • Even Boeing is making investments in this space.

This is starting to look real.

No network, no flying cars

What all of these ventures have in common is connectedness. Using IoT technology, they’re all controlled remotely – with the vehicle in constant connection to home base along the lines of what is now a reality for autonomous road vehicles like those made by Tesla.

Of course, the networked nature of vehicles (flying or not) has relevance beyond safety. No surprise, then, that Uber is moving forward aggressively with plans to test an on-demand flying cars network by 2020 in the cities of LA, Dubai, and Dallas, and 2023 in Sydney. Here the network provides convenience – coordinating a ride-sharing service in the sky that allows passengers to hook up with flying cars on the fly.

Drones for passengers

Essentially, what we’re moving toward is a future of passenger drones. One obstacle to this reality is the need for keeping batteries charged. Because of battery life issues, for example, the EHang 184 can only travel 23 minutes. The Lilium vehicle, it is claimed, can travel up to an hour – enough to make it from London to Paris. This, and advances in battery power storage capacity will iron out most issues around range.

When we solve this problem – and get over some regulatory hurdles – flying cars will become a lived reality for people in cities everywhere. The benefits will be tremendous, too. Count among these benefits such as less pollution (both air and noise pollution) and less traffic congestion (with flying cars taking another route entirely). And when it comes to emergencies, first responders can be deployed faster and more efficiently than ever before – helping to save lives. And let’s face it, flying cars would just be fun.

Next time I get to Dubai I’ll have to try one out.

Photo credit Airbus

What the Internet of Things will look like 10 years from now

I was asked recently where do you see the Internet of Things in 10 years?

It is a cool question to think about, and to frame it properly it helps to think back to what the world was like 10 years ago, and how far we have come since then.
iPhone launch 2007

Ten years ago, in 2007 Apple launched the iPhone. This was the first real smartphone, and it changed completely how we interact with information.

And if you think back to that first iPhone with its 2.5G connectivity, no front facing camera, 3.5 inch diagonal 163ppi screen and compare it to today’s iPhones, that is the level of change we are talking about in 10 years.

In 2027 the term Internet of Things will be redundant. In the same way that we no longer say, “Internet connected smartphone”, or “Interactive website” because the connectedness and interactivity are now a given, in 10 years time all the things will be connected and so the term Internet of Things will be superfluous.

Having said that, while the term may have become meaningless, that is only because the technologies will be pervasive, and that will change everything.

With significant progress in low cost connectivity, sensors, cloud-based services, and analytics, in 10 years we will see:

  • Connected Agriculture move to vertical and in-vitro food production, which will see higher yields from crops, lower inputs required to produce them including a significantly reduced land footprint, and the return of unused farmland to increase biodiversity and carbon sequestration (in forests)
  • Connected Transportation will enable tremendous efficiencies, and a major increase in safety as we transition to predictive maintenance of transportation fleets, as vehicles become autonomous and have vehicle-to-vehicle communication protocols as the norm, and as insurance premiums start to favour autonomous driving modes (Tesla cars have 40% fewer crashes when in Autopilot mode according to the NHTSA)
  • Connected Healthcare will move from the current reactive model to a more predictive healthcare, with sensors alerting of irregularities before any significant incident occurs, and the possibility to schedule and 3D print “spare parts”
  • Connected Manufacturing will enable the transition to manufacturing as a service, distributed manufacturing (3D printing) and make mass customisation with batch sizes of one very much the norm
  • Connected Energy with the sources of demand able to ‘listen’ to supply signals from generators, will facilitate moving to a system of demand more closely matching supply (with cheaper storage, low carbon generation, and end-to-end connectivity). This will stabilise the the grid and eliminate the fluctuations introduced by increasing the percentage of variable generators (solar, wind) in the system thereby reducing electricity generation’s carbon footprint
  • Human computer interfaces will migrate from today’s text-based and touch based systems towards Augmented and Mixed Reality (AR and MR) systems, with voice and gesture enabled UIs
  • And finally, we will see the rise of vast Business Networks. These networks will act like automated B2B marketplaces, facilitating information sharing amongst partners, empowering workers with greater contextual knowledge, and augmenting business processes with enhanced information

Many other aspects of our lives will be greatly improved (I’ve not mentioned improvement to logistics and supply chains with complete track and traceability all the way through the supply chain as a given, for example).

We are only at the start of our IoT journey. In 2007 when the smartphone was starting out the incredible advances we’ve seen as a consequence (i.e Apple’s open sourced ResearchKit being used to monitor the health of pregnant women) weren’t obvious, but they have happened. With the increasing pace of innovation, falling prices for components, and amazing network effects from the connected Internet of Things, the future looks very bright, even if we no longer use the term Internet of Things.

Photo credit Garry Knight on Flickr

Internet of Things, renewables and storage – a perfect storm for utilities’ digital transformation

Without doubt it is a time of great turbulence in the electric utilities space.

In most regions globally, wind and solar are now our cheapest sources of electricity generation, even without subsidies.

As a consequence of this, wind has overtaken nuclear, hydro and coal to become the second largest source of electricity generation in EU in 2016 [PDF]. And at the same time in the US, the solar market is smashing records and grew 95% in 2016 alone.

Then there is storage. Costs here have been tumbling too. So much so that Morgan Stanley predicts the storage market to grow from the roughly $400m in 2016, to a market size of $2-4bn by 2020. This will have big implications for utilities’ ability to add more variable generators (renewables) to their mix without destabilising the grid.

Speaking of grid stabilisation, the refrain up until now has been that for every MW of renewables built, a MW of gas had to also be built as a backstop (for days with no wind, or overcast days, or nights). However, this too has changed. Last August First Solar ran a tests with CAISO (the California grid operator) to test a solar farm’s ability to smooth out grid fluctuations. The results of the test demonstrated that solar farms are able to meet, and sometimes exceed, the frequency regulation response usually provided by natural-gas-fired peaker plants.

Things are changing on the consumption side of the house too.

solarinstall2016

Source: GTM Research / SEIA U.S. Solar Market Insight report

As can be seen from the chart above, installations of residential PV are rising, as is home storage, and another form of potential consumption and storage (v2g), the electric car, saw sales rise by 37% in the US in 2016.

Then there is the whole digitisation of the grid. Now all new equipment is being built with inbuilt ‘smarts’ and connectivity, and even older infrastructure can be retrofitted, so with the advent of the smart grid, we will finally have the possibility of the Electricity 2.0 vision I was talking up back in 2008/09. This is a smart grid where appliances in the commercial or residential worlds can ‘listen’ for pricing signals from the grid, and adjust their behaviour accordingly, taking in electricity when it is plentiful, and switching to alternative sources/lowering consumption when electricity is in high demand.

With the cost of generation dropping, with no end in sight, the cost of storage similarly falling, as I have posited previously, there is a strong possibility that utilities will have to switch to broadband-like ‘all-you-can-eat’ business models with the utilities differentiating, and making their revenue on added services.

Everything is changing for the electric utility industry – and so, against that backdrop, and the fact that I will be presenting on IoT and Utilities at the upcoming International SAP for Utilities Conference in Lisbon, I decided to have a chat with IDC Research Director Marcus Torchia, about the implications for utilities of these huge changes.

We had a great discussion, and many of the themes we touched on, I will be talking about at the Utilities event in Lisbon.

You can check out our chat in the video above, play it in the audio below, or listen to it on the IoT Heroes podcast site.

IoT, IIoT, Industry 4.0 – what’s what?

The Internet of Things is a very nascent area, and as with all maturing topics, the language surrounding it can be a little confusing. This is especially true when the terms are so new, and not always self-explanatory.

So, what are the Internet of Things (IoT), the Industrial Internet of Things (IIoT), and Industry 4.0?

Well, IoT (the Internet of Things) is obviously the broadest of all the terms, and it encompasses the Industrial Internet of Things (IIoT) as well as Industry 4.0.

 

However, IoT also includes the consumer’s Internet of Things. Devices like Nest thermostats, Philips Hue lightbulbs, and August smart connected door locks, for example fall into this category. As mentioned previously on this blog, smart home, or consumer IoT is languishing at the moment for a variety of reasons.

The Industrial IoT (aka IIoT), on the other hand is starting to really take off.

When you talk about the IIoT, you talk about everything along the value chain. Not only manufacturing, but also connected vehicles, transportation optimisation, instrumented agriculture, smart cities, and so on. This space is now starting to see serious investment because the technologies are hitting the right price point, the standards are starting to come together, and successful examples such as the SAP-TrenItalia implementation which is providing savings of €150m per annum on a €50m total investment demonstrate the viability of such investments.

Organisations such as the Industrial Internet Consortium (IIC) work with companies to set the standards, best practices and processes of the Industrial Internet. This work is vital for the success of the IIoT. This is why SAP is heavily involved in this organisation, with SAP EVP Dr Tanja Reuckert being Vice Chair of the Steering Committee.

Here’s my interview with the IIC’s Executive Director, Richard Soley.

And finally we come to the term Industry 4.0, which you can also hear mentioned in conversations about the internet of Things. What exactly is Industry 4.0? Well it refers to digitisation of manufacturing specifically – it focuses primarily on production and the shopfloor within manufacturing organisations.

The term refers to the fourth industrial revolution, and unsurprisingly it has its roots in Germany. Industry 4.0 (sometimes called Industrie 4.0) also has a number of organisations working with industry to create standards. One of the most active is Platform Industrie 4.0, a body which has its roots in the manufacturing arena, and is now converging with the IIC with respect to standards. And again, because Platform Industrie 4.0 is so heavily involved in setting the standards for Industrie 4.0, SAP are deeply engaged.

So, to summarise, IoT is the overarching term referring to all aspects of the Internet of Things, IIoT is IoT as applied to industry, while Industry 4.0 is IIoT specifically for manufacturing organisations.

Italy’s train operator invests big in IoT

TrenItalia has invested €50m in an Internet of Things project which it expects to cut maintenance costs by up to €130m anually, to increase train availability, and improve customer satisfaction ratings.

There is a lot of hype around the Internet of Things (IoT) these days, so it is refreshing to see an IoT story with some real traction (terrible pun, sorry!).

TrenItalia, the primary train operator in Italy, and SAP had a big launch event recently to announce a partnership whereby TrenItalia are using SAP’s IoT technology to help manage the maintenance of the TrenItalia fleet.

TrenItalia operates around 8,000 trains per day, which is in itself, no mean feat. However, it wanted to make its service even more efficient so it looked to the Internet of Things to help.

Historically maintenance on trains was scheduled based on how long the train was in service, how many kilometers it had travelled, or if a failure ocurred, and as a consequence many times the maintenance happened before it was needed.

Trains have had sensors installed for some time now, however typically they wrote their data to log files which were examined at the journey’s end. With the new Dynamic Maintenance Management solution (DMMS), TrenItalia is deploying sensors on all its trains to report back detailed data on the trains’ performance in realtime. The data is used to track where the trains are, to schedule maintenance when it is actually needed, and to increase the safety, and reliability of the entire locomotive fleet.

The trains have between 500-1,000 sensors capable of generating up to 5,000 data points per second measuring variables like motor temperature, line voltage, and braking effort. This data is transferred to TrenItalia’s 6 terabyte in-memory database, and can be stored ultimately in their 1 petabyte cloud storage facility.

The cost of the project to TrenItalia is €50m, which may sound like a lot, but according to TrenItalia CIO Danilo Gismondi, they expect the solution to save them between €104m – €130m per annum (8 – 10% savings in the annual maintenance budget of €1.3bn). There are also savings of an estimated €10-€20m from not having to pay fines and penalties to customers and regulators associated with train failures and delays.

Apart from the financial savings, other benefits of the solution include:

  • a reduction in the unplanned unavailability of trains (leading to a 5-8% increase in train availability)
  • a reduced stock of spare parts
  • a reduction in the amount of time locomotives spend in maintenance and
  • a realtime look into the status of the entire TrenItalia fleet with the ability to be alerted to issues on any one individual locomotive before problems arrive

At €50m, this is a significant outlay for TrenItalia, but they are now battling against competitors on many fronts (air travel, buses, and even ride-share schemes like Uber). Knowing this, a big motivator for TrenItalia’s undertaking the project was to increase customer satisfation ratings. As TrenItalia CEO Barbara Morgante put it

Customers have to choose us because we’re better than others

The transformative nature of the Internet of Things should not be underestimated. With this one solution TrenItalia is saving over €100m a year, it is increasing the safety and reliability of its trains, and it is providing a better service for its customers.

Is the IoT hype justified? Will it change everything, or is it a passing fad?

All the buzz in tech these days is about the Internet of Things. Is the hype justified? Will it change everything, or is it a passing fad?

Tl; dr. It depends, yes, and no. In that order.

To expand a little on that:

Is the hype justified?

It depends on where it is being used, and what for.

So, the use of the Internet of Things (IoT) in industry is really taking off. In fact, just recently (end of July 2016) 451 Research released a report stating that 65% of enterprises are already using the Internet of Things.

There are numerous examples across many sectors – everything from:

As you can see the Industrial Internet of Things (often termed IIoT) is booming, driven by large cost savings, accompanied by deep data insights, and very often reduced carbon emissions.

In the residential sector though, the story is quite different.

There are now Internet of Things connected doorbells, thermostats, lights, televisions, coffee makers, watches, baby monitors, security cameras, lawn sprinklers, refrigerators, even hearing aids.

But the smart home Internet of Things is not yet living up to the hype. The Google Nest, for example only sold 1.3m devices in 2015. All these Things are supposed to offer more convenience, so why aren’t they flying off the shelves?

Two reasons:

  1. Cost – Internet connected things for the home are not cheap. In an industrial setting, adding $1,000 worth of sensors to a wind turbine (for example) is a no-brainer if that wind turbine costs $10m, and the sensors are going to make it more efficient at producing energy, and reduce the chances of its failure, whereas if you are a homeowner, it is very hard to justify paying €200 for 3 internet connected Lightbulbs when a regular Philips LED bulb retails for €6!
    Amazon Screenshot
  2. Lack of convenience – this may sound like a strange one given I said that the Internet of Things was supposed to add to your convenience. Unfortunately the opposite is often true. Each of the IoT items I listed above has its own app, which you need to download, setup, create an account on, and then open up, every time you want to use/control your Thing. We are starting to see some over-arching platforms now which are supposed to help us control all our devices (HomeKit from Apple, SmartThings from Samsung, and Thread from Google), but, if anything are adding to the confusion.

standards

We have Philips Hue, and Lifx LED bulbs in my home, along with Belkin WeMo Switches. The bulbs are now turned on and off at the wall, because it is easier than using an app, and so could just as easily be ‘dumb’ bulbs, and the Belkin WeMo switches failed shortly after getting them (they no longer can connect to the wifi network), so they are taking up space now at the bottom of a drawer somewhere.

Is the residential Internet of Things doomed?

Not at all. If the technology world has taught us anything it is that devices get better and cheaper as time goes by. Just compare the first iPhone to an iPhone 6 to see what I’m talking about.

So, in time, the cost of making connected bulbs will be so low that all bulbs will be connected by default. Ditto coffee machines, refrigerators, etc. Whether we choose to make use of devices ‘smarts’ will depend then very much on how the standards war works out.

The transition will take longer as well because, while we typically change phones every 1-2 years, Our home appliances (doorbells, refrigerators, even LED lightbulbs) tend to have a life more typically of 10-20 years.

So, the residential Internet of Things, as long as it remains expensive, lacks the type of economic imperative which the IIoT has, and doesn’t have a dominant, open standard, will proceed slowly. It will be 5-10 years at the very least, before homes are truly ‘smart’. And even then, a lot of the growth in this sector will likely come from devices subsidised by utilities (such as British Gas’ Hive product range), for energy efficiency programs, or the provision of services.

In the meantime, the Industrial Internet of Things will boom. Justifying the hype, changing enormously how businesses operate, and demonstrating that this is no passing fad.

The Internet of Things – trends for the telecoms, data centre, and utility industries

I gave the closing keynote at an event in Orlando last week on the topic of The Impact of the Internet of Things on Telcos, Data Centres, and Utilities.

The slides by themselves can be a little hard to grok, so I’ll go through them below. I should note at the outset that while many of my slide decks can be over 90, or even 100 slides, I kept this one to a more terse 66 😉

And so, here is my explanation of the slides

  1. Title slide
  2. A little about me
  3. The IoT section start
  4. IoT has been around for a while, but the recent explosion in interest in it is down to the massive price drops for sensors, combined with near ubiquitous connectivity – we’re heading to a world where everything is smart and connected
  5. According to the June 2016 Ericsson Mobility Report [PDF], the Internet of Things (IoT) is set to surpass mobile phones as the largest category of connected devices in 2018
  6. Depending on who you believe, Cisco reckons we will have 50bn connected devices by 2020
  7. While IDC puts the number at 212bn connected devices. Whatever the number is, it is going to mean many devices will be creating and transmitting data on the Internet
  8. What kinds of things will be connected? Well, everything from wind turbines (this is an image from GE’s website – they have a suite of IoT apps which can “improve wind turbine efficiency up to 5%” which in a large wind farm is a big deal)
  9. Rio Tinto has rolled out fully autonomous trucks at two of its mines in Australia. They developed the trucks in conjunction with Komatsu. The trucks, which are supervised from a control room 1,000km away in Perth, outperform manned trucks by 12%
  10. A nod to one of my favourite comedy movies (“See the bears game last week? Great game”), while also introducing the next three slides…
  11. Planes – according to Bill Ruh, GE’s CEO of Digital, GE’s jet engines produce 1TB of data per flight. With a typical plane flying 5-10 flights per day, that’s in the region of 10TB per plane per day, and there are 20,00 planes – that’s a lot of data. Plus, GE is currently analysing 50m variables from 10m sensors
  12. Trains – New York Air Brakes has rolled out a sensor solution for trains, which it says is saving its customers $1bn per year
  13. And automobiles – in the 18 months since Tesla starting collecting telemetry data from its customers’ cars, it has collected 780m miles of driving data. It is now collecting another 1 million miles every 10 hours. And the number of miles increases with each new Tesla sold
    And since 2009 Google has collected 1.5m miles of data. This may not sound like much in comparison, but given its data comes from Lidar radars, amongst other sensors, it is likely a far richer data set
  14. With the rollout of smart meters, UK utility Centrica recently announced that it will be going from 75m meter reads a year, to 120bn meter reads per annum
  15. Wearables, like the Fitbit now record our steps, our heartbeat, and even our sleep
  16. This was my heartbeat last November when I presented at the SAP TechEd event in Barcelona – notice the peak at 2:30pm when I went onstage
  17. Lots of in-home devices too, such as smoke alarms, thermostats, lightbulbs, and even security cameras and door locks are becoming smart
  18. Even toy maker Atari has announced that it is getting into the Internet of Things business
  19. Which is leading to an enormous data explosion
  20. In 2012 analyst form IDC predicted that we will have created 40ZB of data by 2020
  21. In 2015 it updated that prediction to 75ZB
  22. Where will this data be created?
  23. Well, according to the 2016 Ericsson Mobility Report, most of the IoT devices will be in Asia Pacific, Western Europe, and North America
  24. When?
  25. That depends, different devices have different data profiles for creation and consumption of data, depending on geography, time of day, and day of year
  26. And why?
  27. Because, as Mary Meeker pointed out in her 2016 State of The Internet report, global data growth has had a +50% CAGR since 2010, while data storage infrastructure costs have had a -20% CAGR in the same timeframe
  28. In 2011 EU Commissioner Neelie Kroes famously said that Data is the new gold
  29. And if that’s true, as is the case with any gold rush, the real money is to be made supplying the prospectors
  30. Now, let’s look at some of the trends and impacts in the telecoms industry
  31. From Ericsson’s 2016 Mobility Report we can see that the big growth for the telecoms is in data traffic
  32. And not content to be merely infrastructure providers, telcos are looking to climb the value chain
  33. To facilitate this data explosion, telecom companies are building fatter pipes with LTE growing significantly in numbers between 2015 and 2021, while 2019 will see 5G kicking off
  34. Telcos are now offering cloud solutions. Their USP being that their cloud is fast, reliable, and end-to-end secure
  35. There are huge opportunities for telcos in this space
  36. In the next few slides I did a bit of a case study of AT&T, and some of the ways it is leveraging the Internet of Things. First off AT&T has partnered with solar company SunPower to connect residential solar panels for remote monitoring of the panels’ performance
  37. In its connected vehicle portfolio, AT&T manage the connections for Tesla, Audi, GM, and Uber. They have 8m connected cars atm, and expect to grow that to 10m by the end of 2017
  38. And, an interesting data point to back that up – in the first quarter of 2016, in the US, 32% of all new cellular connections were for cars. The largest percentage of any segment
  39. 243,000 refrigerated shipping containers connected through AT&T

  40. AT&T have a partnership with GE for intelligent lighting solutions for cities and public roadways
  41. In the equipment and heavy machinery space, nearly half of all tractors and harvesters in the US are connected through AT&T
  42. While in healthcare, AT&T predicts that wellness tracking and virtual care solutions will reach 60m homes & 74m users by 2019
  43. Then there’s outdoor advertising. AT&T knows data analysis. For years they owned the largest telemarketing organisation in the US. Now, with cellular data, they can completely transform outdoor advertising. Previously for advertising hoardings, the amount of footfall, or vehicular traffic passing a sign could be guesstimated, but no more info than that was available. But now, because AT&T knows where everyone is, their gender, age, and approximate income, they can transform this business.
    Recently they carried out a study with a customer who wanted to advertise to women in the Dallas area who earned over $75,000 per year. They queried the data and found that the customer only needed to buy two billboards in all of Dallas, to adequately cover the target demographic. Needless to say the customer was impressed
  44. Because they don’t have a monopoly on ideas, AT&T have opened up their M2X Internet of Things developer platform to allow outside developers create solutions using AT&T’s infrastructure
  45. They’re far from being alone in this – Verizon have an Internet of Things platform as well called ThingSpace Develop
  46. While t-mobile has announced that it is teaming up with Twilio for its Internet of Things play
  47. And it is not just cellular technologies they are using – there are also other low bandwidth radio protocols such as Lora and Sigfox which the telcos are looking at to broaden their reach
  48. I spoke to a senior exec at a telcom firm recently (who for obvious reasons preferred to remain unnamed) and he told me:
    Telcos want to own everything, everywhere“The internet of things is certainly one way for them to get there
  49. How is all this impacting the data centre industry?
  50. Well, in the next four years data centre capacity will need to increase 750% according to IDC. Also required will be significant ramp-ups in analytics, security and privacy
  51. As Jim Gray pointed out in his book The Fourth Paradigm:

    “As datasets grow ever larger, the most efficient way to perform most of these computations is clearly to move the analysis functions as close to the data as possible”

    In other words, instead of bringing all the data back to the data centre to be processed, more and more of the analysis will need to be performed at the edge

  52. As a graduate biologist, this reminds me of the reflex arc – this arc allows reflex actions to occur relatively quickly by activating spinal motor neurons, without the delay of routing signals through the brain
  53. So there will be a greater need for event stream processing outside the data centre – this will bring about faster responsiveness, and reduce storage requirements
  54. This also explains the rise of companies such as EdgeConnex – companies who provide proximity, and lower latency
  55. And the rise of new designs of racks for hyperscale computing, such as the 150kW Vapor.io Vapor Chamber which, according to a study conducted by Romonet is $3m cheaper per MW and reclaims 25% of floor space
  56. Other initiatives in the industry include Google’s attempting to create a new standard for HDD’s to make them taller, adding more platters, and thus increasing IOPs
  57. Microsoft and Facebook are getting together with Telefonica to build a 160TB transatlantic fibre cable (the largest to-date) to handle the vast streams of data they see coming
  58. While Intel are warning that organisations need to become more security aware, as more devices become connected
  59. I also decided to address a trend in data centres to require renewable energy from their utility providers, and did so by referencing this excellent letter from Microsoft General Counsel Brad Smith on the topic (recommended reading)
  60. Finally, what about the utilities sector…
  61. Well, there are many ways the internet of Things will impact the utilities vertical, but one of the least obvious, but most impactful ones will be the ability to move energy demand, to more closely match supply. If you’re curious about this, I’ve given 45 minute keynotes on this topic alone
  62. Another way the Internet of Things will help utilities is renewables management (such as the GE example referenced earlier), and preventative maintenance applications
  63. And finally, energy information services will be a big deal, for everything from remote monitoring for seniors, through to device maintenance, and home management
  64. The conclusions
  65. Thanks
  66. Any questions?

I received extremely positive feedback on the talk from the attendees. If you have any comments/questions, feel free to leave them in the comments, email me (tom@tomraftery.com), or hit me up on Twitter, Facebook, or LinkedIn.